Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559149

RESUMO

Focused ultrasound (FUS) is an emerging noinvasive technique for neuromodulation in the central nervous system (CNS). To evaluate the effects of FUS-induced neuromodulation, many studies used behavioral changes, functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). However, behavioral readouts are often not easily mapped to specific brain activity, EEG has low spatial resolution limited to the surface of the brain and fMRI requires a large importable scanner that limits additional readouts and manipulations. In this context, functional ultrasound imaging (fUSI) holds promise to directly monitor the effects of FUS neuromodulation with high spatiotemporal resolution in a large field of view, with a comparatively simple and flexible setup. fUSI uses ultrafast Power Doppler Imaging (PDI) to measure changes in cerebral blood volume, which correlates well with neuronal activity and local field potentials. We designed a setup that aligns a FUS transducer with a linear array to allow immediate subsequent monitoring of the hemodynamic response with fUSI during and after FUS neuromodulation. We established a positive correlation between FUS pressure and the size of the activated area, as well as changes in cerebral blood volume (CBV) and found that unilateral sonications produce bilateral hemodynamic changes with ipsilateral accentuation in mice. We further demonstrated the ability to perform fully noninvasive, transcranial FUS-fUSI in nonhuman primates for the first time by using a lower-frequency transducer configuration.

2.
medRxiv ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38196636

RESUMO

Background: Focused ultrasound (FUS) in combination with microbubbles has recently shown great promise in facilitating blood-brain barrier (BBB) opening for drug delivery and immunotherapy in Alzheimer's disease (AD). However, it is currently limited to systems integrated within the MRI suites or requiring post-surgical implants, thus restricting its widespread clinical adoption. In this pilot study, we investigate the clinical safety and feasibility of a portable, non-invasive neuronavigation-guided FUS (NgFUS) system with integrated real-time 2-D microbubble cavitation mapping. Methods: A phase 1 clinical study with mild to moderate AD patients (N=6) underwent a single session of microbubble-mediated NgFUS to induce transient BBB opening (BBBO). Microbubble activity under FUS was monitored with real-time 2-D cavitation maps and dosing to ensure the efficacy and safety of the NgFUS treatment. Post-operative MRI was used for BBB opening and closure confirmation as well as safety assessment. Changes in AD biomarker levels in both blood serum and extracellular vesicles (EVs) were evaluated, while changes in amyloid-beta (Aß) load in the brain were assessed through 18 F-Florbetapir PET. Results: BBBO was achieved in 5 out of 6 subjects with an average volume of 983±626 mm 3 following FUS at the right frontal lobe both in white and gray matter regions. The outpatient treatment was completed within 34.8±10.7 min. Cavitation dose significantly correlated with the BBBO volume ( R 2 >0.9, N =4), demonstrating the portable NgFUS system's capability of predicting opening volumes. The cavitation maps co-localized closely with the BBBO location, representing the first report of real-time transcranial 2-D cavitation mapping in the human brain. Larger opening volumes correlated with increased levels of AD biomarkers, including Aß42 ( R 2 =0.74), Tau ( R 2 =0.95), and P-Tau181 ( R 2 =0.86), assayed in serum-derived EVs sampled 3 days after FUS ( N =5). From PET scans, subjects showed a lower Aß load increase in the treated frontal lobe region compared to the contralateral region. Reduction in asymmetry standardized uptake value ratios (SUVR) correlated with the cavitation dose ( R 2 >0.9, N =3). Clinical changes in the mini-mental state examination over 6 months were within the expected range of cognitive decline with no additional changes observed as a result of FUS. Conclusion: We showed the safety and feasibility of this cost-effective and time-efficient portable NgFUS treatment for BBBO in AD patients with the first demonstration of real-time 2-D cavitation mapping. The cavitation dose correlated with BBBO volume, a slowed increase in pathology, and serum detection of AD proteins. Our study highlights the potential for accessible FUS treatment in AD, with or without drug delivery.

3.
Sci Rep ; 14(1): 1488, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233480

RESUMO

Focused ultrasound (FUS) is a non-invasive and non-ionizing technique which deploys ultrasound waves to induce bio-effects. When paired with acoustically active particles such as microbubbles (MBs), it can open the blood brain barrier (BBB) to facilitate drug delivery otherwise inhibited due to the presence of BBB. One of the parameters that affects the FUS beam propagation is the beam incidence angle on the skull. Prior work by our group has shown that, as incidence angles deviate from 90°, FUS focal pressures attenuate and result in a smaller BBB opening volume. The incidence angles calculated in our prior studies were in 2D and used skull information from CT. The study presented herein develops methods to calculate incidence angle in 3D in non-human primate (NHP) skull fragments using harmonic ultrasound imaging without using ionizing radiation. Our results show that ultrasound harmonic imaging is capable of accurately depicting features such as sutures and eye-sockets of the skull. Furthermore, we were able to reproduce previously reported relationships between the incidence angle and FUS beam attenuation. We also show feasibility of performing ultrasound harmonic imaging in in-vivo non-human primates. The all-ultrasound method presented herein combined with our neuronavigation system stands to increase more widespread adoption of FUS and render it accessible by eliminating the need for CT cranial mapping.


Assuntos
Barreira Hematoencefálica , Crânio , Animais , Incidência , Barreira Hematoencefálica/diagnóstico por imagem , Ultrassonografia , Crânio/diagnóstico por imagem , Primatas , Microbolhas , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
4.
Res Sq ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37397998

RESUMO

Focused ultrasound (FUS) is a non-invasive and non-ionizing technique which deploys ultrasound waves to induce bio-effects. When paired with acoustically active particles such as microbubbles (MBs), it can open the blood brain barrier (BBB) to facilitate drug delivery inhibited due to the presence of BBB. One of the parameters that affects the FUS beam propagation is the beam incidence angle on the skull. Prior work by our group has shown that, as incidence angles deviate from 90°, FUS focal pressures attenuate and result to a smaller BBB opening volume. The incidence angles calculated in our prior studies were in 2D and used skull information from CT. The study presented herein develops methods to calculate incidence angle in 3D in non-human primate (NHP) skull fragments using harmonic ultrasound imaging without using ionizing radiation. Our results show that ultrasound harmonic imaging is capable of accurately depicting features such as sutures and eye-sockets of the skull. Furthermore, we were able to reproduce previously reported relationships between the incidence angle and FUS beam attenuation. We also show feasibility of performing ultrasound harmonic imaging in in-vivo non-human primates. The all-ultrasound method presented herein combined with our neuronavigation system stands to increase more widespread adoption of FUS and render it accessible by eliminating the need for CT cranial mapping.

5.
IEEE Trans Biomed Eng ; 69(4): 1359-1368, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34570701

RESUMO

Transcranial focused ultrasound (FUS) in conjunction with circulating microbubbles injection is the sole non-invasive technique that temporally and locally opens the blood-brain barrier (BBB), allowing targeted drug delivery into the central nervous system (CNS). However, single-element FUS technologies do not allow the simultaneous targeting of several brain structures with high-resolution, and multi-element devices are required to compensate the aberrations introduced by the skull. In this work, we present the first preclinical application of acoustic holograms to perform a bilateral BBB opening in two mirrored regions in mice. The system consisted of a single-element focused transducer working at 1.68 MHz, coupled to a 3D-printed acoustic hologram designed to produce two symmetric foci in anesthetized mice in vivo and, simultaneously, compensate the aberrations of the wavefront caused by the skull bones. T1-weighed MR images showed gadolinium extravasation at two symmetric quasi-spherical focal spots. By encoding time-reversed fields, holograms are capable of focusing acoustic energy with a resolution near the diffraction limit at multiple spots inside the skull of small preclinical animals. This work demonstrates the feasibility of hologram-assisted BBB opening for low-cost and highly-localized targeted drug delivery in the CNS in symmetric regions of separate hemispheres.


Assuntos
Acústica , Barreira Hematoencefálica , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Modelos Animais de Doenças , Camundongos , Crânio
6.
Sci Rep ; 9(1): 20104, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882678

RESUMO

We report zero-th and high-order acoustic Bessel beams with broad depth-of-field generated using acoustic holograms. While the transverse field distribution of Bessel beams generated using traditional passive methods is correctly described by a Bessel function, these methods present a common drawback: the axial distribution of the field is not constant, as required for ideal Bessel beams. In this work, we experimentally, numerically and theoretically report acoustic truncated Bessel beams of flat-intensity along their axis in the ultrasound regime using phase-only holograms. In particular, the beams present a uniform field distribution showing an elongated focal length of about 40 wavelengths, while the transverse width of the beam remains smaller than 0.7 wavelengths. The proposed acoustic holograms were compared with 3D-printed fraxicons, a blazed version of axicons. The performance of both phase-only holograms and fraxicons is studied and we found that both lenses produce Bessel beams in a wide range of frequencies. In addition, high-order Bessel beam were generated. We report first order Bessel beams that show a clear phase dislocation along their axis and a vortex with single topological charge. The proposed method may have potential applications in ultrasonic imaging, biomedical ultrasound and particle manipulation applications using passive lenses.

7.
Polymers (Basel) ; 11(9)2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31546807

RESUMO

The correction of transcranial focused ultrasound aberrations is a relevant topic for enhancing various non-invasive medical treatments. Presently, the most widely accepted method to improve focusing is the emission through multi-element phased arrays; however, a new disruptive technology, based on 3D printed holographic acoustic lenses, has recently been proposed, overcoming the spatial limitations of phased arrays due to the submillimetric precision of the latest generation of 3D printers. This work aims to optimize this recent solution. Particularly, the preferred acoustic properties of the polymers used for printing the lenses are systematically analyzed, paying special attention to the effect of p-wave speed and its relationship to the achievable voxel size of 3D printers. Results from simulations and experiments clearly show that, given a particular voxel size, there are optimal ranges for lens thickness and p-wave speed, fairly independent of the emitted frequency, the transducer aperture, or the transducer-target distance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...